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Abstract—Visualizing spatial correlations in 3D ensembles is challeng-
ing due to the vast amounts of information that need to be conveyed.
Memory and time constraints make it unfeasible to pre-compute and
store the correlations between all pairs of domain points. We propose
the embedding of adaptive correlation sampling into chord diagrams
with hierarchical edge bundling to alleviate these constraints. Entities
representing spatial regions are arranged along the circular chord layout
via a space-filling curve, and Bayesian optimal sampling is used to
efficiently estimate the maximum occurring correlation between any two
points from different regions. Hierarchical edge bundling reduces visual
clutter and emphasizes the major correlation structures. By selecting an
edge, the user triggers a focus diagram in which only the two regions
connected via this edge are refined and arranged in a specific way in a
second chord layout. For visualizing correlations between two different
variables, which are not symmetric anymore, we switch to showing a
full correlation matrix. This avoids drawing the same edges twice with
different correlation values. We introduce GPU implementations of both
linear and non-linear correlation measures to further reduce the time
that is required to generate the context and focus views, and to even
enable the analysis of correlations in a 1000-member ensemble.

Index Terms—Correlation sampling, chord diagrams, ensemble analy-
sis.

1 INTRODUCTION

IN this work, we use chord diagrams with hierarchical
edge bundling [2] for correlation visualization in 3D

ensemble fields. We consider the correlations between the
values of physical variables in the ensemble members at
selected locations in 3D space. This will eventually enable
us to analyze the used ensemble prediction system, which
generates the ensemble members using variations of the
initial simulation conditions and model formulations, by
conveying regions where these variations result in similar or
dissimilar relative behavior of the member values. Notably,
by interpreting a single ensemble member at T distinct time
steps as an ensemble comprising T members, our approach
can be immediately applied to convey temporal correlations
in a single field.

When using chord diagrams, however, the space along
the circular layout is limited and large numbers of entities
cannot be well represented. While a chord diagram can at
most show few hundreds of entities and their relationships,
considerably more need to be shown to convey all point-to-
point correlations in a 3D field.
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To address this limitation, we propose using two chord
diagrams which are shown side by side. The context view
(see left of Fig. 1) uses a chord diagram that shows the cor-
relations between all regions in the domain that emerge by
partitioning space into disjoint sub-domains. The focus view
(see middle and right of Fig. 1) shows refined correlations
between exactly two selected regions. The user controls the
refinement by selecting edges in the chord diagrams and can
refine down to the level where point-to-point correlations
are shown.

The correlation between two regions is indicated by the
maximum of all point-to-point correlations between pairs of
grid points in either region. In general, however, computing
all point-to-point correlations between a pair of regions—
and for all pairs shown in the context view—is unfeasible
due to excessive computing times. I.e., for the ensembles we
consider in this work, the computation of all point-to-point
correlations using the Pearson Product-Moment Correlation
Coefficient (PPMCC) as a linear dependence measure takes
more than two days on a recent GPU, and the computation
of more complex measures like the non-linear Mutual Infor-
mation (MI) takes considerably longer. Storing all point-to-
point correlations, on the other hand, requires more than 2.8
TiB of memory (assuming two bytes per correlation value)
for a single variable and, thus, is unfeasible too.

Our strategy to reduce the time for generating the con-
text and focus diagrams is twofold. Firstly, we provide
efficient GPU implementations—especially for computing
MI—to speed up the computation of single correlation
samples. Secondly, and inspired by the approach of Chen
et al. [3], we employ importance-based correlation sam-
pling to significantly reduce the number of point-to-point
correlations that need to be computed. However, we use
Bayesian Optimal Sampling (BOS) to automatically select
the set of point-to-point correlations that provide a good
estimate of the maximum correlation between any two
points from different regions. Especially the time required
for generating the context view, where correlations between
many pairs of large regions need to be estimated, can be
reduced significantly via BOS. If the data does not fit into
GPU memory, the system switches to an aggregate data
representation using statistical means, at a resolution level
that can be stored on the GPU. BOS is then performed on
this level to avoid performance losses, at the expense of
higher uncertainty in the maximum correlation estimates.

Our main contributions are:
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Fig. 1. Bottom left: Context view of a large weather forecast ensemble [1] shows mutual information (MI) maxima between regions in a 3D space
partition, laid out on a chord along a space filling curve and visualized via edge bundling. The ensemble spread is encoded in the outer shell.
Maxima are estimated via Bayesian optimal sampling (BOS) for all 3828 pairs of regions, each comprising 32× 32× 20 grid points, in less than 16
seconds. Selected regions (red and blue triangle) are shown in a 3D view (top left). Middle: Focus diagram shows refined MI estimates - computed
on the fly using our GPU implementation in less than 4 seconds - between selected regions. Right: Focus view on regions selected in the first focus
diagram.

• Locally adaptive BOS is used to compute the maxi-
mum point-to-point correlation between two regions
from only few correlation samples.

• A novel GPU implementation of point-to-point MI
computations exploiting parallel search and sorting
operations.

• Entities, i.e., domain regions or points, are arranged
along the circular chord layout using a space-filling
curve.

• A focus diagram shows a selected pair of regions
opposite to each other on the circular layout.

Chord diagrams with hierarchical edge bundling have
been selected for correlation visualization because they can
effectively reduce the amount of displayed edges, and corre-
lations below a user-selected threshold can simply be omit-
ted. In correlation matrices, as an alternative, entries corre-
sponding to low values can be left blank, but they are shown
nevertheless and take up space. Thus, chord diagrams can
more effectively reduce visual clutter. Furthermore, when all
correlations for a selected entity should be analyzed using
a correlation matrix, the user follows the corresponding
row or column. In this case, only showing the upper or
lower triangular matrix requires the user to change “direc-
tion”. Thus, the full matrix including redundant information
needs to be shown, which is avoided when using a chord
diagram. However, when correlations between two points
and different variables are analyzed, it matters at which
point which variable is considered. The same edge then
needs to be drawn twice with different correlation strength
in a chord diagram, leading to visual clutter. To avoid this,
we show these correlations in a correlation matrix, which
is then completely filled. Adaptive refinement is supported
as described, by selecting matrix elements and showing the
refined regions in a focus diagram using again a correlation
matrix.

The remainder of this paper is structured as follows.
After reviewing previous work, we describe and evaluate
BOS for estimating the maximum correlation between two

regions using a reduced set of correlation samples, and
we introduce a novel GPU method for computing the MI
between many pairs of random variables in parallel. Next,
we introduce focus+context chord diagrams for correlation
analysis in 3D ensemble fields. We then perform a quality
and performance evaluation of the proposed approach, and
demonstrate the use of the proposed approach with a syn-
thetic and two large 3D weather forecast ensembles. The
paper is concluded with ideas for future work.

2 RELATED WORK

In this work, we address the problem of how to efficiently
visualize spatial correlations in large 3D ensembles of scalar
fields. This is in contrast to many previous approaches for
ensemble visualization, which have often been devoted to
the visual analysis of the ensemble spread, using feature-
and location-based approaches [4]–[6]. This includes ap-
proaches that provide visual abstractions of the major trends
in ensembles of line or surface features [7]–[11], as well
as location-based approaches that visualize local statistical
data summaries [7]–[9], [12] or find compact representations
of ensemble data [13].

2.1 Ensemble Correlation Analysis
The analysis of spatial (auto)correlations, concerned with
both time-varying and ensemble data, is an important task
in meteorology and climatology. Nocke et al. [14] introduce
concepts from visual network analytics to analyze climate
networks. In particular, they use edge bundling in geo-
referenced networks to indicate spatial correlations in 3D
climate data. Wilks [15] discuss the effect of spatial correla-
tions among the grid points on statistical significance tests in
atmospheric sciences. They focus on the analysis of spatial
correlations of linear trends in annual precipitation, and plot
the correlations of pairs of cells with a certain maximum
distance threshold as a scatter plot and fit a decay function
to show the decrease of the correlation by the cell distance.
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For iso-contours in scalar ensemble fields, Ferstl et al. [8]
assess the spatial correlation of their occurrence at different
locations in the domain. To counteract the high computa-
tional cost of dependence measures like MI, Farokhmanesh
et al. [16] propose the use of neural dependence fields
(NDFs) to reconstruct approximated dependence fields at
runtime from a compressed form for interactive visual-
izations. The underlying neural network is trained using
sparse, randomly selected correlation samples. Global tele-
connections are visualized by Delalene et al. [17] to ana-
lyze in interannual to decadal climate variability. They use
dependence measures to infer spatial functional networks
between clustered sub-domains, in combination with cor-
relation matrices to visualize such dependencies. Kumpf et
al. [18] use correlation clustering to assess the sensitivity of
numerical weather forecast quantities to changes in model
variables. Their approach aims to reveal the confidence in
the sensitivities obtained via ensemble sensitivity analysis
[19], [20], which is used in meteorology to determine the
origin of forecast errors and improve placing of targeted
observations. Evers et al. [21] introduce the use of multi-
dimensional embeddings for determining clusters in time
series correlation in 2D multi-field climate ensembles.

Besides linear correlation measures such as the Pear-
son correlation coefficient, non-linear measures like MI
have been considered in atmospheric and climate sciences.
Laarne et al. [22] use MI for exploring non-linear depen-
dencies in atmospheric data. They use it both for analyzing
temporal autocorrelations of a single field using line plots
and correlations between multiple fields using static cor-
relation matrices. Babel et al. [23] use MI for selecting the
most suitable explanatory variables that are fed to a neural
network for rainfall forecasting. Ning et al. [24] use MI for
uncertainty assessment in precipitation forecasts.

2.2 Correlation Visualization

In particular for the analysis of multivariate data, where
multiple variables are given at each data point, a number
of approaches for correlation visualization have been pro-
posed. The survey by He et al. [25] gives an overview of the
different research areas in the field of multivariate spatial
data analysis. One line of research is dedicated to the finding
of appropriate similarity measures to support multivariate
correlation analysis, such as gradient-based measures as
introduced by Sauber et al. [26], Gosink et al. [27] and
Nagaraj et al. [28]. Zhang et al. [29] introduce correlation
maps, which show pairwise correlation between variables
in a graph, and combine them with a parallel coordinate
view indicating the main correlation structures on the data
level. Liu and Shen [30] introduce probabilistic association
graphs for the analysis of informativeness and uniqueness
of multivariate data. Like in our work, their visual workflow
provides a circular chord diagram for visualizing the rela-
tionships between pairs of entities. In some previous works
[31]–[33], MI has been considered as a measure of statistical
dependence between different variables.

Another popular approach for correlation analysis is
correlation clustering. Pfaffelmoser and Westermann [34]
cluster regions of 2D scalar fields based on a measure of
the correlation of a random variable to its surrounding,

called the correlation neighborhood. Liebmann et al. [35]
use hierarchical correlation clustering in combination with
a dendrogram visualization. Berenjkoub et al. [33] combine
the segmentation of the spatial domain based on correla-
tion strength with according coloring of pathlines, yet they
restrict to correlations among pairs of attributes at narrow
spatial regions and fixed locations over time or along path-
lines. Evers et al. [36] combines a hierarchical correlation
segmentation algorithm with correlation heat maps. Biswas
et al. [31] cluster variables with similar distributions into
groups and select a representative of each cluster. Variables
are displayed in a diagram using a force-directed graph lay-
out, where MI between two variables is used for computing
the attractive force between two nodes. This graph view is
linked with parallel coordinate plots and an isosurface view
for further exploration. Due to its computational complexity,
correlation clustering has been restricted to 2D fields so far.

To address the computational complexity of computing
correlations, i.e., quadratic complexity in the number of
entities to put into relation to each other, Su et al. [37]
describe a system for parallel and distributed correlation
analysis. The method generates a joint bin representation
as a data aggregate on which measures like the MI can
then be estimated efficiently. Chen et al. [3] propose using
domain knowledge to first draw a set of samples from a
simulation grid and compute the correlation volumes for
each of these samples. A correlation volume stores the
correlations from all points in the grid to a reference point.
A matrix containing the distances of each pair of correlation
volumes is then calculated and used to decide where more
samples need to be computed.

2.3 Linearization of Spatial Data

Diagram techniques provide effective encodings of infor-
mation in the form of schematic representations. When
encoding the elements of a spatial domain like a grid
in a diagram, the elements often need to be linearized
to lay them out along curves or surfaces. When working
with 2D or 3D spatial data, space-filling curves are often
used to generate such a layout, i.e., a mapping of multi-
dimensional positions to a one-dimensional index, under
the objective that spatial proximity is preserved. Popular
choices are Z-order curves or Peano-Hilbert curves [38].
Zhou et al. [39] introduce data-driven space-filling curves,
which take into account the underlying data to increase
the spatial proximity of elements with similar values. After
linearization of the spatial elements, relationships between
elements can be represented by connecting the linearized
elements with lines. When displaying a lot of lines at once,
the visualization can become cluttered due to many crossing
lines and structures in the data become hard to perceive.
Hierarchical edge bundling [2] partly alleviates this limi-
tation by visually bundling lines based on a hierarchical
structuring of the elements. In our work, we use a Z-
order curve for linearizing the vertices of a 3D simulation
grid. The advantage of Z-order curves over the data-driven
curves by Zhou et al. [39] is that one can create an octree
hierarchy over the elements, which can then be used for
hierarchical edge bundling and on-demand subdivsion of
the displayed data level. A popular example demonstrating
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Fig. 2. Locations of the first 100 samples picked by different sampling schemes for finding the maximum in a 2D field, here the probability density
function of a 2D multivariate normal distribution.

the use of diagram techniques with linearization of spatial
elements is the work by Demir et al. [40]. After linearization,
they use a histogram-based diagram view combining line
and bar charts. Wang et al. [41] introduce a circular graph
that can show the information transfer between pairs of
variables. Recently, Weissenbock et al. [42] extend on the
work by Demir et al. and propose to adaptively scale the
mapping that is obtained via a space-filling curve, to enable
focusing on important spatial regions.

Chord diagrams have been used in a number of previous
works for the analysis of hierarchical data coupled with
focus+context-like approaches. Rees et al. [43] propose a
technique for the interaction with large chord diagrams,
proposing brushing and deformed chord diagrams acting
as focus views. Bae and Lee [44] combine chord diagrams
with magnifying lens-like focus views for the analysis of the
relation of tags. Gou and Zhang [45] describe a technique
for the multiscale exploration of network data organized in
a tree, where aggregate elements can successively be refined
in the same diagram view.

3 CORRELATION SAMPLING

We assume that a simulation ensemble with E members is
given on a 3D regular grid of size X × Y × Z . At every
grid point, one or more variables are given per ensemble
member. We further assume that M different entities can
be encoded along the circular layout of a chord diagram,
where M needs to be selected depending on the resolution
of the diagram. Then, the Cartesian grid is partitioned into
M sub-grids of size C = Xd × Yd × Zd. These sub-grids
are subsequently called bricks. Partitions are built so that
the maximum difference between any pair of elements from
{Xd, Yd, Zd} is minimized, i.e., bricks are mostly isotropic
in the three dimensions. In the same way, each brick is
recursively refined into M/2 bricks of ever smaller size,
so that all siblings of exactly two bricks, i.e., the pair for
which correlations are visualized, can be arranged along the
circular chord layout. The refinement process is recursively
repeated until bricks are comprised of one single data value.

To determine an indicator of the correlation between
two bricks, point-to-point correlations between pairs of grid
points in either brick are computed, and the maximum of
these correlations is used. In the following, we describe the
importance-based sampling strategy we employ to obtain a
good estimator of these maxima from only a low number of
effectively computed point-to-point correlations.

3.1 Bayesian Optimal Sampling

One approach for finding the maximum correlation be-
tween a pair of bricks is random sampling of correla-
tions at grid points in each pair of bricks. One sample
position corresponds to a position in a 6 dimensional
space, where 3 dimensions represent the position in one
brick, and the remaining 3 dimensions represent the posi-
tion in the respective other brick. We have experimented
with uniform random sampling and quasi-random low-
discrepancy sequences, like Halton [46] and plastic [47] se-
quences. Previous works on the use of low-discrepancy sam-
pling in quasi-Monte Carlo numerical integration [48] have
shown superior convergence properties of quasi-random
low-discrepancy sequences over random sampling. Unlike
the case of Monte Carlo integration, we were not able to
perceive any significant differences in the convergence prop-
erties of uniform pseudo-random and quasi-random low-
discrepancy sampling strategies for stochastic optimization.
We have summarized our experiments in Section 5.3. How-
ever, a disadvantage of both random and quasi-random
maximum sampling is that local or global maxima can be
missed. This raises the question whether available samples
can be used to infer in which regions new samples would
be most likely to result in improved maxima.

Bayesian optimization [49], [50] aims to solve the opti-
mization problem maxθ∈D f(θ) for a blackbox function f
and domain D, which may be hard to compute. Underlying
the optimization is the concept to minimize the number of
function evaluations, i.e., the number of correlation samples
that need to be computed in our scenario. The basic ingre-
dients of the optimization are the probabilistic surrogate
model and the acquisition function. While the former is
used to express Bayesian belief about the outcome of the
objective function that is derived from known evaluations,
the acquisition function chooses the next sample to evaluate.
Fig. 2 compares the specific sampling patterns used by
(quasi-)random sampling and BOS for finding the maxi-
mum value in a 2D domain.

Specifically, Gaussian process surrogate models can be
used to model a distribution of the function values for each
location in the parameter space. To restrict the distribution
of available functions to those that agree with the avail-
able correlation samples, the model is conditioned on the
new sample and the given set of samples. We randomly
sample an initial set of correlations and update the model
accordingly. The acquisition function is then maximized
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with respect to the selected model, to predict the locations
of the next correlation samples. For the acquisition function,
we use the Upper Confidence Bound (UCB) [51], and for op-
timizing it, a randomized version of DIRECT-L [52] is used,
which is provided via a binding to the NLopt library [53].
We have evaluated all gradient-free optimization algorithms
provided by NLopt and found this optimizer to give the best
error metric results in our concrete settings, see Section 5.3.
The Matern kernel [54] is used for the covariance function
of the underlying Gaussian processes.

Most Bayesian optimization algorithms operate on con-
tinuous search spaces. Daulton et al. [55] describe how
to use probabilistic reparameterization, where the discrete
search space of voxel center pairs is considered. As pro-
posed by Daulton et al., we map continuous search space
parameters θ ∈ [0, Xd − 1]× · · · × [0, Zd − 1] to discrete 6D
grid positions Pi = ⌊θi⌋+Bi, Bi ∼ Ber(θi − ⌊θi⌋). Ber(p) is
the Bernoulli distribution, which has an outcome of 1 with
a probability of p and an outcome of 0 otherwise. Con-
sequently, the continuous positions between voxel centers
will be mapped to closer centers with higher probability.
To obtain support for Gaussian processes and optimization,
we integrate the library Limbo [56] into our application, and
batch the acquisition of new correlation samples for multiple
brick pairs using multiple CPU threads. This enables us to
efficiently use GPU correlation computations in conjunction
with Bayesian optimization on the CPU. Parallel executions
on the GPU are exploited to compute correlations for multi-
ple feature vectors simultaneously.

3.2 GPU-Accelerated Correlation Computation

Since the proposed workflow builds upon in-turn compu-
tations of large sets of point-to-point measures of statistical
dependence, these computations need to be highly efficient
to not hinder interactivity. In order to not restrict the work-
flow to computationally lightweight measures like PPMCC,
a novel optimized GPU implementation for computing MI
has been developed.

Cover and Thomas [57] define MI as the “relative en-
tropy between the joint distribution and the product distri-
bution” of two random variables, i.e.,

MI(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X), (1)

were X and Y are two random variables, and H is the
entropy. Like PPMCC, also MI is symmetric in the two
random variables, yet it is in the range [0,∞) and does not
distinguish between negative and positive correlations.

While PPMCC requires merely to compute means and
variances and can, thus, be realized efficiently on the GPU,
MI requires to estimate the joint discrete probability density
function from the joint histogram of the two variables in
order to compute the conditional entropy. A popular ap-
proach for computing the joint histograms is via binning,
i.e., the two continuous random variables are discretized
and a joint and two marginalized histograms are computed
for the discretized realizations. MI is then estimated from
the discretized realizations. Binning has been both paral-
lelized and ported to the GPU in previous works, e.g., for
the purpose of correlation analysis [37] and medical image
registration [58]–[61].

As has been demonstrated and analyzed by Kraskov
et al. [62], however, binning introduces systematic errors
and result in low fidelity estimators. To avoid this, they
propose using entropy estimates that are derived from the
Chebyshev distances between the k-th nearest neighbor in
the joint distribution space. Given X and Y , the joint distri-
bution Z = (X,Y ) is represented by joint 2D data samples
zi = (xi, yi). For each joint sample zi, its distance ϵi to
the k-th nearest neighbor is calculated using the Chebyshev
distance, i.e., for a k-th nearest neighbor zj , d(zi, zj) =
max{|xi−xj |, |yi−yj |}. We choose k = ⌈ 3n

100⌉ in accordance
to the results by Kraskov et al. for correlated Gaussian
distributions. Then, for a joint sample zi the numbers nx,i
and ny,i of joint samples fulfilling respectively |xi−xj | < ϵi
and |yi − yj | < ϵi are computed, and the MI is estimated as
M̃I(X,Y ) = ψ(n)+ψ(k)− 1

n

∑n
i=1 ψ(nx,i)+ψ(ny,i). Here,

n is the number of realizations of the random variables,
i.e., the ensemble member count E in our application, and
the so-called digamma function ψ(z) is the logarithmic
derivative of the gamma function Γ(z) [63], i.e.,

ψ(z) =
d

dz
ln Γ(z) =

Γ′(z)

Γ(z)
. (2)

Notably, due to the complexity of k-nearest neighbor
search and frequent evaluations of the digamma function,
only roughly 5000 point-to-point MI samples can be com-
puted per second on the CPU for the largest of our data
sets, compared to approximately 800000 per second using
PPMCC (cf. Table 1). Since we are not aware of any GPU
implementation of the Kraskov estimator (abbreviated as
KMI in the following sections), we introduce such an imple-
mentation in the following. This implementation achieves a
speed-up of a factor of 10, and thus gives the speed that is
required for an interactive correlation analysis as intended
by our approach

At the core of an efficient computation of KMI is a
data structure that allows to efficiently perform k-nearest
neighbor queries for many joint samples in parallel on the
GPU. Notably, the search data structure needs to be rebuilt
for each pair of points for which MI is estimated, i.e., for
each set of E joint data samples zi = (xi, yi), i ∈ {1, . . . , E}.
Then, the data structure is used to determine the distance to
the k-th nearest neighbor for every joint sample. In princi-
ple, k-d trees are well suited for this task, yet recursive tree
traversal and heterogeneous code paths for different data
samples in the tree construction and distance computation
make an efficient GPU implementation challenging. Since
the GPU is based on a single instruction, multiple threads
(SIMT) model, where many threads are run in lockstep, it
can only sequentially evaluate different code branches for a
group of threads. Furthermore, to reduce latencies, as many
memory access operations as possible should be moved
outside of branches. Lastly, GPU shading languages usually
do not support recursion, which is used in most available
k-d tree implementations.

In a number of previous works, these restrictions have
been addressed with specific adaptations of k-d tree con-
struction and traversal on the GPU [64]. The use cases of
these implementations, however, differ significantly from
ours. While usually a single k-d tree representing an en-
tire scene is built once and many queries are executed in
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parallel, in our scenario as many k-d trees as MI values
need to be built, i.e., one k-d tree per pair of joint data
samples. Then, each tree is used to accelerate the E k-th
nearest neighbor searches for each joint sample zi. Thus,
in our implementation we assign the computation of one
point-to-point MI value to one compute thread, so that a
single thread computes its specific k-d tree and performs all
k-th neighbor searches sequentially. As neighboring threads
of a thread group will build and traverse k-d trees based on
different data in lockstep, it is important to avoid divergence
caused by the different data being processed per thread.

One of the most recent GPU-friendly k-d tree traversal
algorithms by Wald [65] employs iterative stack-free tree
traversal to avoid recursion and minimize diverging code
branches. Compared to a custom iterative k-d tree traver-
sal using a manually managed stack as a replacement for
recursion, the approach turned out to be about 15% faster
for the large ensembles we consider in this work. However,
when using the stack-free implementation we noticed that
the fairly heterogeneous sets of data values assigned to
the threads in one thread group can lead to significant
execution divergence between neighboring threads during
the sorting operation required for k-d tree construction. To
reduce this effect, we have incorporated the GPU heap-sort
implementation by Kern et al. [66]. Instead of using variable
loop bounds and branching to avoid unnecessary element
swap operations like sorting algorithms tailored to CPUs
like quicksort [67], the proposed heap sort implementation
accepts potentially unnecessary element swaps in favor of
avoiding branching. By this, the computation of the MI is
further accelerated by about 10% to 20% (depending on the
ensemble size) compared to using an adapted, iterative ver-
sion of introsort [68]. Introsort is a hybrid sorting algorithm
switching from quicksort to another sorting algorithm when
the data recursively sorted becomes too small for quicksort
to work efficiently. Introsort is used, for example, by the
GNU standard C++ library [69].

Finally, we use the Lanczos approximation [70], [71]
in our implementation to efficiently evaluate the digamma
function on the GPU in constant time. The Lanczos approx-
imation is a method for the numeric approximation of the
gamma function and can also be extended to the digamma
function using the relationship between the two functions in
Eq. (2). In Section 5.2, we compare the performance of our
GPU implementation of KMI to an optimized implementa-
tion on the CPU, and observe speed-ups of approximately
one order of magnitude.

3.3 Sampling from Spatial Aggregates

If the ensemble cannot be stored in GPU memory, sam-
pling point-to-point correlations in the initial data becomes
far more time consuming, since it requires streaming the
entire ensemble when new samples are needed. Notably,
however, for realistically sized data sets this affects only the
generation of the context view, where many point-to-point
correlations need to be computed for each pair of initial
bricks. Once the user has selected a brick pair for analysis
in the focus view, the initial data values of both bricks
are quickly streamed to the GPU and BOS is performed as
described.

Fig. 3. Left: Subdivision of a 250×352×20 simulation grid into 8×11×1
bricks of size 32 × 32 × 20. The bricks are traversed using a Z-order
curve. Right: Nodes in the chord diagram. The leaves ordered by the
Z-order curve are linearized in the outermost circle. Inner octree nodes
used for hierarchical edge bundling (they are hidden during rendering).
Nodes with the same parent are assigned the same color.

To avoid the aforementioned restriction, a hierarchical
ensemble representation using the same partitioning strat-
egy as for brick refinement is computed first. We have
evaluated both a mean-tree and a max-tree as alterna-
tives. The mean/max-tree stores for each brick and each
ensemble member—starting at the first refinement level—
the means/maxima of all variables at the grid points repre-
sented by this brick. For the largest ensemble we consider in
this work, this process takes about 12 seconds on our target
architecture per variable. For computing the correlation with
respect to a selected variable between a pair of bricks, BOS
is then performed using the mean/maximum values at the
highest resolution tree-level that just fits into GPU memory.

It is clear that using aggregate values for correlation
estimation introduces errors in the estimated correlation
maxima, because significant and in particular isolated high
correlations can be overlooked. On the other hand, our
experiments show that performing maximum correlation
estimation on pre-computed means gives results that are
close to those obtained via BOS and sampling point-to-
point correlations from the initial data. Furthermore, when
showing the ensemble spread in the chord diagrams as
described below, this information indicates those bricks
where the estimation is uncertain and further refinements
should be performed. As our experiments have indicated
that both the mean- and max-tree give more or less equal
accuracy, we have decided to support the mean-tree in our
implementation.

4 CHORD DIAGRAMS FOR 3D FIELDS

As discussed above, the ensemble domain is partitioned into
M regions, and each region is again partitioned into M/2
sub-regions.M is the number of entities that can be encoded
along the circular layout of a chord diagram, and it needs
to be selected depending on the resolution of the diagram.
For instance, when plotting a chord diagram on a 512x512
viewport, we typically choose M = 128 to approximately
have 4-7 pixels between each entity on the circle so that
edges between entities can be well distinguished.
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Fig. 4. Context chord diagram using MI as dependence measure for a large simulation ensemble [1]. Left: Spatial correlations in the temperature
field tk. Middle: Sub-selection of correlations with MI ≥ 0.62. Right: Sub-selection of correlations with brick distance ≥ 570km (measured from the
brick centers) and MI ≥ 0.62. Ensemble spread σ of tk is shown on the outer ring.

Bricks are laid out along the circle through a Z-order
curve (see Fig. 3 left), so that the spatial proximity of
bricks is preserved as good as possible in the circular lay-
out. Unlike other space-filling curves, like the data-driven
approach by Zhou et al. [39], Z-order curves have the
property that when the data is hierarchically partitioned
using an octree structure, all siblings of a node are visited
by the space-filling curve before proceeding to the next
parent node. Since we use such an octree layout for brick
refinement, and also build an octree-based partition above
the initial M bricks in turn, we can effectively make use
of hierarchical edge bundling [2], i.e., bundling lines based
on a hierarchical structuring of the entities on the circular
layout. By using a linearization of bricks along a Z-order
curve, we directly obtain a hierarchy for the bricks that
are visualized in the chord diagram. The root node of the
octree is placed in the center of the chord diagram and
the inner nodes are positioned from the center to the outer
perimeter of the diagram. The angle of an inner node is the
average of the angles of their child nodes. This hierarchical
arrangement is demonstrated in Fig. 3 right. Finally, as
proposed by Holten [2], when connecting two entities (i.e.,
leaf nodes of the octree) the inner nodes along the shortest
path between the two leaves are used as control points
for constructing a smooth B-spline curve, i.e., an edge. B-
splines are discretized using the de Boor algorithm [72] and
rendered using the vector graphics library NanoVG [73].

4.1 Context Chord Diagram
In the context diagram, the M bricks, each representing a
sub-grid of size Xd ×Yd ×Zd, are aligned along the circular
chord layout. They are visualized via small circles and
connected by edges indicating their pair-wise correlations.
Each edge represents the maximum correlation between any
of the grid points in two connected bricks (see Fig. 4). The
user can select showing correlations in a selected range,
to emphasize important relationships. Furthermore, only
correlations between bricks in a certain distance range can
be shown, which enables to switch between long-, mid- and
short-range correlations. Edges are ordered with respect to
increasing correlation magnitude, to also emphasize strong
negative correlations, and rendered in this order on top of
each other. Correlation strength is mapped to color, starting

at the background color (low strength) and fading towards
a selected key color (high strength). The user can specify a
range of correlation values to use for filtering the displayed
edges. By default, the selected range is also used as the range
for color mapping.

As shown in Fig. 4 right, the outer ring around the
circular layout is used to display additional ensemble infor-
mation via a greyscale colormap, i.e., the per brick ensemble
spread (average of the standard deviation σ). Since high en-
semble spread indicates a high uncertainty in the ensemble
simulation, the spread hints at interesting regions for further
analysis and, in particular, indicates the uncertainty when
estimating brick-to-brick correlations using mean values
over successively refined sub-regions.

4.2 Focus Chord Diagram
When selecting an edge in the context chord, the correlations
between the entities in the two bricks connected by this
edge (called bricks A and B in the following) are displayed
in finer detail in a new chord diagram—the focus chord
diagram. While the context diagram displays the correla-
tions between all M(M − 1)/2 pairs of M initial bricks,
the focus diagram displays the M/2 refined bricks of A
on the bottom semicircle and the M/2 refined bricks of
B on the top semicircle of the circular chord layout. Self-
correlations within A and B are not considered, as selecting
an edge indicates a user’s interest in a finer representation
of the correlations between the two connected regions, but
not necessarily the self-correlation within these regions. The
selection triggers the refinement of A and B into M smaller
bricks and M/2×M/2 pairs for which correlations are com-
puted and edges are drawn. For computing the correlations,
correlation sampling is used as described in Section 5.4. The
ring is again colored via the ensemble spread in each of the
smaller bricks.

As shown in Fig. 5 right, by first selecting an edge in the
context view and then subsequently selecting edges in the
focus view, the user can adaptively navigate down to the
finest resolution level. The focus chords, however, are not
shown side by side, but each newly refined chord replaces
the currently seen one. To show the refinement level, as
many navigation buttons (visualized via arrow symbols)
are shown as the number of times the user has selected a
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Fig. 5. Recursive linear layout of bricks along a z-curve. Two bricks are selected (red and blue), and laid out on the respective upper and lower
half-circle in the top left focus view. Entities in each brick are linearized via a z-curve. In further refinements of the focus view (indicated by blue
arrows), the picked regions are again laid out along z-curves.

refinement. By clicking a buttons, the user can jump back in
the hierarchy by the number of levels that is encoded into
the arrow symbols.

Each selected brick is laid out along one semicircle using
a local Z-curve, as shown in Fig. 5 (left). To indicate which
bricks have been selected for refinement in the context view,
two arrows in blue and red are used to mark these bricks.
Accordingly, the top and bottom semicircle in the focus view
are visualized using a blue or red outline (cf. Fig. 5 (right)).
The spatial regions corresponding to the selected bricks are
put into spatial context in a 3D view, by drawing them
as opaque boxes with the size and at the locations of the
selected bricks. The 3D view is updated whenever the user
either selects an edge or hovers over an edge with the mouse
cursor in the context or focus view.

In case the user is interested in refining only one single
brick, i.e., to specifically look at self-correlations in this brick,
the small circle representing the brick in the context or focus
diagram can be clicked. In this case, the new focus diagram
is generated as previously described, yet now the refined
bricks of the selected one are shown along the top and
bottom semicircle in the focus view.

4.3 Comparative Correlation Visualization

The proposed workflow for correlation sampling and visu-
alization can be used directly to compare spatial correlations
in two different fields, i.e., two different simulation vari-
ables. In this case, each brick is duplicated to also represent
the second variable field, and the edges of the different
variables are rendered into the same chord diagram with
different colors.

Since edges showing different variables can occlude each
other they are sorted with respect to (absolute) correlation
strength and rendered in the order of increasing strength.
Thus, edges indicating higher correlation are blended on
top of curves with lower correlation. This is demonstrated

in Fig. 6 left. Furthermore, a second ring is shown in the
chord diagram to indicate the ensemble spread with respect
to a second variable, enabling an effective comparison of the
spatial distribution of the spread.

In addition to showing edges that indicate correlations
in a single variable field, it is interesting to analyze the cor-
relations between two different variables. BOS (or sampling
on aggregates) is then performed as described, but point-
to-point correlations are computed between pairs of points
from either field. When a chord diagram is used to visualize
these correlations, however, the same edge is displayed with
different correlation strengths, i.e., to indicate the correlation
between the first and the second variable at, respectively,
the first and the second point, as well as the correlation
between the first and the second variable at, respectively, the
second and the first point. To avoid this, we show variable-
to-variable correlations in a correlation matrix instead of
a chord diagram. This matrix, which we subsequently call
inter-variable correlation matrix, is completely filled due to
the mentioned anti-symmetry and does not show redundant
information (see Fig. 6 right). Once the system switches
from a chord diagram to an inter-variable correlation matrix,
adaptive refinement is supported as described. By selecting
a matrix element, the refined regions are shown in a focus
diagram using again a correlation matrix.

5 ANALYSIS AND RESULTS

5.1 Data Sets
We analyse the proposed correlation visualization using
four different data sets: “Synth1” is a synthetic 1000 member
ensemble at a grid resolution of 256 × 256 × 32. It is
used to test the ability of BOS to find the true maxima
between brick pairs. It contains two larger clusters and
close-by smaller mini-clusters with high positive correlation
(cf. Fig. 9 bottom). Within each cluster, the correlations are
decaying by their l∞-norm distance from the cluster center
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Fig. 6. Left: Comparative visualization of MI in temperature tk and
longitudinal wind component u of a weather forecast ensemble [1].
Right: Inter-variable correlation matrix showing correlations between tk
and u. Entries in the upper right triangular structure indicate correlations
between tk at first region (column) to u at second region (row), and
between u at first region (row) to tk at second region (column) for the
lower left triangular structure.

(i.e., max{dx, dy, dz}). The mutual correlation between each
pair of clusters is high as well. Between clusters there are re-
gions with low correlations to any of the clusters. “Synth1”
has been generated by computing at each grid point one
sequence of 1000 uncorrelated random samples, another
sequence of 1000 perfectly linearly correlated deterministic
samples, and a number λ ∈ [0, 1] that is used to interpolate
between the values in these sequences (λ = 1 at cluster
centers, decaying by the distance to the closest center).
Using deterministic, identical samples in the case of λ = 1
makes sure that the clusters are mutually correlated.

“Synth2” is a second synthetic data set that is used
to examine the convergence properties of BOS (cf. Fig. 7).
Computing the ground truth maximum between two bricks
of size n3 has a time complexity of O(n6), which quickly
becomes infeasible. Thus, we generate “Synth2” so that the
maxima for each pair of bricks can be computed analytically.
In particular, we have chosen the probability density func-
tion of a 6-variate normal distribution as a substitute for cor-
relation computation. This function is cheap to evaluate, the
density maximum is known to be at the distribution mean,
and the minimum is located at one of the domain corners.
We don’t use mixtures of Gaussians, as finding the maxima
in such distributions is significantly more complicated [74],
[75]. The mean and covariance of the distributions are
sampled randomly during our experiments.

“Necker” [1] is a convective-scale 1000 ensemble mem-
ber simulation forecast over central Europe, using a “full-
physics non-hydrostatic regional model (SCALE-RM) with
a horizontal grid spacing of 3 km”. The values are stored
on a regular grid of size 250 × 352 with 20 vertical height
levels that capture vertical variations. The ensemble com-
prises multiple physical variables, such as temperature,
wind speed, hail and precipitation. “Matsunobu” [76] is a
large ensemble that has been simulated using the ICON-D2
numerical weather prediction model. It stores 180 ensem-
ble members at a grid of size 640 × 704 with 64 vertical
height levels. While “Necker”—even when two variables
are compared—fits entirely into the memory of our target
GPU, this doesn’t hold for “Matsunobu”. Thus, the mean
hierarchy described in Section 3.3 is used in this case to
generate the context view.

TABLE 1
Performance comparison of CPU and GPU implementations of PPMCC

and KMI. All correlations from a single reference point to all other
1,760,000 grid points in “Necker” are computed. n is the number of

ensemble members.

Measure CPU (s) GPU (s) Speedup

n = 100
PPMCC 0.049 0.002 24.5x
KMI 6.085 0.672 9.1x

n = 1000
PPMCC 2.1 0.21 10.0x
KMI 412.2 35.9 11.5x

5.2 Performance Evaluation
For PPMCC and KMI, Table 1 shows the performance that
is achieved on the CPU and the GPU. All timings have
been evaluated on a system running Ubuntu 20.04 with
an AMD Ryzen 9 3900X 12-core (24-thread) CPU and an
NVIDIA GeForce RTX 3090 GPU. The experiments have
been performed with “Necker”, by selecting a grid point
in the 3D domain and computing the correlations to all
other grid points. This amounts to 1.76 million correlation
computations, using 100 and 1000 members, respectively.

For computing KMI on the CPU, a parallelization is used
that allocates dynamic heap memory outside of the paral-
lelization loop. This avoids expensive system calls which
affect the performance in every loop iteration. All CPU
implementations utilize OpenMP for parallelization. The
GPU implementation of KMI shows a considerable speedup
of approximately 11×.

For the 1000 member ensemble, the throughput even
for the computationally most expensive measure KMI is
about 49000 samples per second. Notably, however, this
throughput cannot be achieved with any of the tested sam-
pling methods. The reason is that the one-to-many query is
extremely cache-friendly and can effectively exploit SIMT
parallelism on the GPU. Furthermore, when used in com-
bination with chord diagrams, computed correlations need
to be downloaded to the CPU for generating the diagrams.
In practice, a throughput between roughly 18000 samples
per second is achieved for random sampling. BOS achieves
a throughput of 11000 samples per second for BOS at 100
samples per brick pair and 8300 at 400 samples per brick
pair. When using BOS, it is in particular the computational
overhead that is introduced by the evaluation of a Gaussian
process model that leads to the reduction, which scales non-
linearly with the number of samples added to the model.

The situation is slightly different for the data set “Mat-
sunobu”, which cannot be stored entirely in GPU memory.
Thus, the system estimates correlations from the level where
2× 2× 2 data values are represented by their means. Then,
the entire data set fits into GPU memory and the context
diagram can be computed in approximately 15 seconds.

5.3 Qualitative Evaluation
Firstly, we evaluate the sampling strategies introduced in
Sec. 3 for computing representative correlation maxima
between pairs of bricks. For comparing the quality of dif-
ferent sampling strategies, it is necessary to compute the
ground truth beforehand, i.e., the minimum and maximum
of all point-to-point correlations between any pair of grid
points in two bricks. Then, the relative error of the sampled
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Fig. 7. Left and middle: Correlation sampling via BOS and random sampling variants. Mean sampled maximum for all brick pairs of 32 × 32 × 20
voxels in “Necker”. Higher maximum is better. All observations are averaged over 10 runs. For the same number of samples, BOS achieves higher
maxima in a shorter amount of time. Right: Mean normalized error for 1000 randomly selected brick pairs of 32× 32× 32 voxels in “Synth2”. Lower
error is better. After an initial lead of random sampling, BOS converges to the almost exact maximum with only 100 samples.

maxima can be computed as the fraction of the difference
between the maximum and minimum. However, for bricks
of size 32 × 32 × 20, as, for instance, used to generate the
context view of “Necker”, this already amounts to more
than 400 million point-to-point correlations that need to be
computed for a single pair of bricks. Since in the statistical
evaluation we consider averages over many pairs of bricks,
this is unfeasible due to time constraints. On the other hand,
considerably smaller brick sizes, for which the ground truth
can be computed in a reasonable amount of time, are no
longer representative. Consequentially, for evaluation with
a real data set as shown in Fig. 7 left and middle, we show
the convergence rates with increasing number of samples
and increasing time budget that are achieved with different
sampling strategies. The ground truth to which the sam-
pling schemes converge is not known. In these experiments,
the Kraskov MI estimator is used with “Necker”.

As can be seen in Fig. 7 left, for an equal amount of
samples, BOS comes significantly closer to the assumed
maximum than all alternative sampling variants. The re-
sulting curve is steeper and indicates faster convergence to
the ground truth than those of the alternatives. To confirm
that the lower number of samples required by BOS is not
outweighed by higher computation times for each sample,
Fig. 7 middle shows the estimate of the maximum for given
time budgets. Notably, BOS achieves higher accuracy than
all other variants in the same amount of time, despite the
fact that BOS samples are considerably more expensive as
shown in the performance analysis before.

We use “Synth2” to further assess the convergence prop-
erties of all sampling methods. As shown in Fig. 7 right,
BOS converges faster than all other variants. Here, the y-axis
shows the mean relative error of the computed maxima. For
each approximated maximum obtained via sampling, we
compute the normalized relative distance on the scale from
the exact minimum and maximum for the specific brick pair.
A value close to 1 indicates that the sampling method is
close to the minimum on average, and a value of 0 that it
is close to the maximum. It can be seen that, on average,
random sampling gives slightly better results than BOS for
a low number of samples. BOS, on the other hand, shows
the trade-off between exploration and exploitation. Explo-
ration means searching in previously relatively unexplored
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Fig. 8. Sampled correlation maxima in 1000 brick pairs from “Necker”
(averaged over 10 runs) using the initial data (f = 1) and means of
2× 2× 2 (f = 2) and 4× 4× 4 (f = 4) data values in the temperature
field tk. Brick pairs are sorted wrt increasing maxima in the initial data to
reduce spikes. The average deviation for f = 2 and f = 4, respectively,
is 1.6% and 1.7%.

areas with high uncertainty for possibly higher maxima.
Exploitation means refining an already known good max-
imum to find a possibly higher value in its surroundings.
For the synthetic data set, the acquisition function used by
the Bayesian optimizer might prioritize exploration in the
beginning. Since the data set is smooth and has a single local
maximum, this only seems to pay off for a higher number
of samples.

Furthermore, we evaluate the accuracy of correlation
sampling when brick-to-brick correlations are computed
via BOS on mean values instead of the initial data values.
The maximum correlation between 1000 randomly sampled
brick pairs of size 32 × 32 × 20 in “Necker” is computed
using BOS with 100 samples. BOS is performed on the initial
data values, and on brick pairs of size 16 × 16 × 10 and
8×8×5 where respectively each entry contains the mean of
2× 2× 2 and 4× 4× 4 initial data values. All brick-to-brick
correlations are computed 10 times and then averaged to
reduce the effect of random initializations of BOS. The brick
pairs are then sorted with respect to increasing maxima
when computed on the initial data, and the maxima that
have been computed on mean values are arranged accord-
ingly. The results are shown in Fig. 8, demonstrating that
even at a downsampling factor of four the maxima that are
computed on the corresponding mean values are in good
agreement with the maxima computed on the initial data.
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Fig. 9. Correlation analysis in “Synth1” using the PPMCC. Left: Context
view (top) shows sparse brick-to-brick correlations. 3D spatial view
(bottom) confirms sparsity via volume rendering the per-point correlation
maxima. Red and blue triangles indicate bricks selected for refinement.
Middle: Selected bricks are shown via red and blue cubes in the spatial
view (bottom). Bricks contain different amounts of points with high and
low correlations, resulting in different sparsity patterns in the focus view
(top). Right: Second refinement shows asymmetric pattern on top half-
circle, which is due to level-wise layout of data points along the z-curve.

At the same time, even at a downsampling factor of two the
memory requirement is reduced by a factor of eight, so that
“Matsunobu” can be stored entirely in GPU memory.

5.4 Sampling Strategy
Our tests confirm that even though BOS samples are more
expensive than samples taken via random sampling, BOS
requires so much less samples that overall the same quality
is achieved in less time. However, when repeating the
experiments with ever smaller bricks, the performance gains
of BOS become less and less significant. In particular, while
a noticeable advantage of BOS can still be perceived at a
brick size of 16×16×16, beyond that the random sampling
approaches become more efficient at equal quality. This is
because the data values in smaller bricks tend to have lower
variation, in general, and the overall number of required
samples becomes so low that the computational overhead
of BOS cannot be amortized.

According to this observation, we pursue the following
strategy. BOS is used to estimate the correlation maxima
between the many pairs of large bricks at the context level.
For instance, at the context level of “Necker” there are 8×11
bricks of size 32 × 32 × 20, so that 88x87/2 brick-to-brick
correlation maxima need to be estimated. With BOS using
100 samples per brick pair and KMI as correlation measure,
this requires roughly 16 seconds of pre-processing time.
Notably, it would take about 365 days to compute the brick-
to-brick maxima if all point-to-point correlations were to be
considered. At focus levels, and at latest if the brick size
goes below 16 × 16 × 16, the system switches to random
sampling down to the level where the computation of
correlations between all point-to-point pairs is fast enough.
Here we consider an update time of less than 5 seconds to
be acceptable.

5.5 Correlation Analysis
5.5.1 “Synth1”
In our first experiment, we demonstrate the use of chord di-
agrams with BOS for an interactive analysis of the PPMCCs
in “Synth1”. Since the correlations in “Synth1” are known

Fig. 10. Data set “Necker”: At each grid point the MI in temperature tk
between this point and the two points marked by red dots are multiplied
and volume rendered. The two points correspond to the locations of the
selected bricks in the context view in Fig. 1. Left: MI in vertical layer 10.
Right: MI in vertical layer 19.

(see Fig. 9 bottom left), the experiment demonstrates the
potential of our approach to reveal these structures and hint
towards the most prominent spatial relationships. “Synth1”
has been partitioned initially into 4× 4× 1 bricks which are
laid out along the context chord (see Fig. 9 top left). Only
few edges between a small subset of all bricks indicate high
correlation, i.e., between those bricks that contain (parts
of) a cluster. The user can interactively select edges to see
where the bricks with low or high inter-brick correlation are
located in the 3D domain. When selecting an edge in the
context chord, the two bricks connected via this edge are
shown in the spatial view and laid out along the half-circles
of the first focus chord diagram. For the two selected bricks,
the focus view shows asymmetry in the number of entities
showing large correlations between the upper and the lower
half-circle. This occurs because an edge has been selected
in the context view that connects a region densely filled
with a large cluster with a region containing two smaller
clusters, i.e., correlations are between all sub-regions in the
brick containing the large cluster and only a subset of sub-
regions in the other brick. When going further down in the
hierarchy by selecting an edge in the focus diagram, one
again sees in the second focus diagram (Fig. 9 top right)
that both selected bricks comprise different numbers of finer
bricks with high correlations.

Notably, in all situations BOS can correctly estimate the
maximum PPMCC of 1 between all bricks containing parts
of the clusters. Furthermore, it can be observed that the
correlations are high where the ensemble spread is low, and
vice versa. This is indicated by the spread shown around
the circular layout, which is due to how the synthetic data
set has been created. In regions outside of the red clusters in
the 3D view, ensemble values are drawn from independent
and identically distributed random variables, and values are
more and more linearly distributed the closer they get to a
cluster center.

5.5.2 “Necker”
In a second experiment, we analyse long-range MI struc-
tures in the temperature field tk of “Necker”. Therefore, we
first suppress all correlations between bricks that are closer
to each other than a selected distance threshold. A brick size
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Fig. 11. Data set “Necker”: Visual analysis of MI in water vapor mixing ratio qv. Top, left to right: Context view showing correlations between bricks
with distance ≥ 288km and MI ≥ 1.43, spatial view of selected brick pair, focus view of correlations between selected bricks, spatial view of refined
bricks selected in focus view, focus view of selected refined bricks. Bottom, left to right: Same as top, but correlations with MI ≤ 0.3 are shown.

of 32×32×20 is used in the context view, so that all vertical
levels are spanned by one brick. The focus view uses a brick
size of 4× 4× 4. This setting has been used to generate the
visualizations in Fig. 1.

The context view reveals multiple regions which are
connected by bundles of edges indicating high correlations.
One bundle that stands out is seen on the top right of the
diagram. A representative edge from this cluster has been
selected (indicated by the red and blue triangles), and the
corresponding bricks are shown in the 3D view and further
subdivided in the focus view. The selected bricks lie over
the Baltic and North Sea. As can be seen in the focus view,
there are 32 entity pairs with notably high correlation. By
hovering over the edge with the mouse, one can see that
these entities correspond to the sub-regions in the topmost
vertical levels. This confirms the observation by Necker and
co-workers of low correlation between levels close to the
ground and the tropopause, respectively. High correlations
between spatially distant layers are not present.

When interactively hovering over the edge close to the
selected one, it can be seen that tk has higher correlations
in higher vertical layers. Furthermore, a cluster of high
correlation—corresponding to the inspected bundle of edges
in the context view—resides in the top right corner of the
3D field. These structures are confirmed in the volume
renderings of 3D MI fields in Fig. 10, where MI values
are computed separately between each grid point and two
selected points. At each grid point, the two MI values have
then been multiplied to indicate those regions where MI is
high with respect to both selected points. As can be seen,
higher correlations are revealed both in the most northern
parts of the domain and in higher layers of the atmosphere.
Overall, the proposed chord diagrams can effectively con-
vey correlation structures over multiple scales in one single
view. Notably, this could only be seen in correlation volumes
by manual selection of many reference points.

In a second experiment, we analyze the spatial corre-
lation structures in a different variable, the water vapor
mixing ratio qv (kg kg−1), in Fig. 11. Most interestingly,
when filtering for the highest correlations in Fig. 11 top, and

in contrast to the findings regarding the temperature tk,
correlations between the North and Baltic Sea are mostly
absent in the context view. As can be seen, e.g., from the
picked pair of bricks in the context view, spatial correlations
for qv are higher over continental Europe. For the context
view bricks spanning half of the height of the domain have
been chosen. From the ensemble spread displayed in the
outer ring it can be seen that the spread in lower levels is
higher than in higher levels, conveyed through the striped
pattern. We have selected two bricks for closer inspection
over central Germany (red) and northern Italy (blue). The
highest correlations in the focus view are all confined to the
highest vertical layers, with some lower correlations also to
medium layers above northern Italy. This becomes visible
through hovering over the high-value edges running from
bottom right to top right in the focus view. At these heights,
qv is highly correlated across large regions of continental
Europe. When looking at a second focus view for a pair of
selected sub-bricks (Fig. 11 top right), we see high symmetry
of the correlation structure between the two regions.

In Fig. 11 bottom, we now filter for lower correlations
(MI ≤ 0.3) to also inspect lower correlations closer to
the ground. In this case, the highest correlations are now
again in the region over the North and Baltic Sea. For the
bottom layers over the ocean, the correlation structures look
significantly different than those over continental Europe.
While they are significantly lower, the maximum is closer
to the sea level. This can again be verified by hovering over
high-value edges in the focus view. In the second focus view
(Fig. 11 bottom right), two sub-bricks close to the ground
have been selected. The blue sub-brick is closer to the coast
than the red one. Here, we no longer have the perfect axis
symmetry from the correlations of higher levels. A few of
the sub-bricks in the red region are correlated to almost all
of the sub-bricks in the blue region.

5.5.3 “Matsunobu”
In a third experiment, we first analyze the cross-correlations
between the longitudinal u and latitudinal v wind compo-
nents in “Matsunobu”. Fig. 12 left shows the corresponding
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Fig. 12. Left: Inter-variable correlation matrix showing MI as depen-
dence measure between the longitudinal and latitudinal wind compo-
nents u and v in “Matsunobu”. Right: Spatial view with selected locations
and isosurfaces for u (red) and v (blue) in a representative ensemble
member.

inter-variable correlation matrix. An entry is marked with
a red and blue arrow, and the selected bricks are shown in
the spatial view in Fig. 12 right. The matrix view conveys
a distinct cluster with high correlation values. Bricks in this
cluster are mostly located in the western and northern parts
of the simulation domain, which is seen in the spatial view
when hovering over the matrix elements. Furthermore, iso-
surfaces in u (red surface) and v (blue surface) correspond-
ing to high wind speed are rendered in the spatial view.
They indicate a strong wind current in the northern and
western parts. The standard deviations displayed next to the
topmost matrix row and leftmost column show relatively
low deviation between the individual ensemble members in
the prominent cluster, hinting at high prediction accuracy.
The high cross-correlations indicate that the individual en-
semble members are strongly dependent. It is also conveyed
that differences in the longitudinal and latitudinal wind
components are considerably less correlated in the other
regions over central Europe.

We then shed light on the correlation structures in u and
v by means of a context chord diagram (see Fig. 13). Again,
correlations are highest in the western and northern parts
over Europe. In the context view, edges for both variables
are rendered jointly, sorted from front to back by their
corresponding correlation value. When selecting one of the
edges with the largest MI values for v, the corresponding
focus diagrams between u and v show similar but not
identical correlation structures. Overall, correlations in v
are slightly higher and more equally distributed over the
individual height layers, which is visible due to a larger
amount of highly saturated edges.

6 LIMITATIONS

A general limitation of chord diagrams is that for more than
one variable edges can occlude each other and the visual-
ization can become cluttered. By using two distinct colors
as proposed, in combination with filtering of correlations
and brick pairs, this limitation can be relaxed, yet especially
due to occlusions a comparative analysis remains difficult.
This problem becomes even more severe when more than
two variables are compared.

BOS, on the other hand, while being able to build an
accurate surrogate model with only a few samples if the

underlying field is smooth, may miss correlation maxima if
the field is noisy or maxima are confined to small regions. It
is probably due to the smoothness of the correlation fields
in atmospheric data that 100 BOS samples resulted in fairly
accurate maxima estimations in all of our experiments. In
other scenarios, however, it can be necessary to manually
adapt BOS. When the user has prior knowledge on the
smoothness of the sampled field, the UCB [51] acquisition
function that is used in the Bayesian optimization process
can be parameterized accordingly, i.e., new samples can be
distributed to regions with high uncertainty (exploration)
or regions in proximity to previous samples with high value
(exploitation). The acquisition function uses a parameter κ
to control the trade-off between exploration and exploita-
tion. In all our experiments this parameter was set to 0.5, yet
a larger value should be selected to increase exploration for
fields with many local maxima and a lower value to increase
the amount of exploitation and, thus, the convergence rate
for smoother fields.

It also should be mentioned that in situations where
significantly more correlation samples need to be taken, the
computational overhead introduced by BOS can become a
limiting factor. When using BOS with a Gaussian process
surrogate model, as in our work, the time complexity for a
set of s samples is O(s3). As an alternative, an approxima-
tion via sparse Gaussian processes can be used, which limits
the local contribution to a set of ŝ support points and results
in a time complexity of O(sŝ2) [77]. However, as can be seen
in Fig. 7 left, in our experiments we observed that beyond
100 BOS samples the accuracy of maxima estimation did
not further improve considerably. Thus, we did not consider
alternative methods for speeding up computations, yet for
other types of data this can become necessary.

7 CONCLUSION AND FUTURE WORK

We have proposed the use of importance-based correla-
tion sampling to support an interactive focus+context vi-
sualization of correlation structures in large 3D ensemble
fields. The maximum correlation between two sub-regions
is estimated via Bayesian optimal sampling, and region-to-
region maxima are visualized via a chord diagram including
edge bundling to reduce visual clutter. For large ensembles,
maxima are sampled from a mean-tree at a suitable reso-
lution. Regions are linearized along a space-filling curve
and mapped to the circular chord layout. The user can
interactively select chord edges for a closer inspection in a
focus view, and analyse correlation patterns of more than
one physical variable via a chord diagram or an inter-
variable correlation matrix. We have introduced optimized
GPU solutions to efficiently compute prominent measures
of statistical dependence in large ensembles. The use of our
approach has been demonstrated with two large simulation
ensembles and one synthetic data set.

In the future, we intend to address the limitation of
chord diagrams for comparing the correlations in multiple
variables. Especially, we will analyse the use of set opera-
tions, i.e., set intersections, between the set of edges in the
chord diagrams of different variables, to find similarities in
the respective correlation fields. We believe that by using
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Fig. 13. Comparative chord visualization of MI in each of the variables u and v in “Matsunobu”. Left: Context diagram showing edges for brick
distances ≥ 420km. Middle: Spatial view of selected brick pair. Right: Focus diagrams for the first and second refinement levels.

such operations the correlations in multiple fields can be
compared effectively.

The computational complexity of MI, which can hinder
an interactive analysis of large ensembles, will be addressed
by including neural correlation fields [16]. By training a
neural network to predict MI values at high speed, the
sampling performance can be improved significantly.

Furthermore, it will be interesting to include temporal
correlations into chord diagrams. This, however, is chal-
lenging, since it requires to encode the time dimension
and access far more data for correlation sampling. The first
challenge can be addressed by using an additional circular
shell around the chords in which the time axis is encoded,
and in which the user can select the times that should be
considered for correlation analysis. The second challenge
requires the extension of the mean-tree to also cover the
time domain, so that interactivity can be ensured when both
spatial sub-regions and time points are selected adaptively.

Lastly, we will collaborate with domain experts to ex-
plore unknown correlation structures in large weather fore-
cast ensembles. So far, such structures are not considered
in meteorological workflows due to computational limits,
even though there is agreement that they could hint at
unknown relationships. Such relationships can, for instance,
show dependencies between different simulation variables,
or between fields that have been assimilated or simulated.
Correlation structures could also be used to reveal redun-
dancies between different ensemble members, and, thus, to
reduce the number of required members. In this context, we
consider in particular the analysis of the temporal evolution
of correlation structures to be important.

SUPPLEMENTAL MATERIALS

The code of the software implementing the visu-
alization and interaction technique proposed in this
work is made available at https://github.com/chrismile/
Correrender and archived at [78]. The used synthetic corre-
lation test data set can be generated with a script available
in the GitHub repository of the application. Access to the

convective-scale 1000 ensemble member simulation forecast
by Necker et al. [1] used in this work can be requested from
the authors of the data set. The data set by Matsunobu et
al. [76] is publically available.
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